If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-6=-0
a = 1; b = 1; c = -6;
Δ = b2-4ac
Δ = 12-4·1·(-6)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-5}{2*1}=\frac{-6}{2} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+5}{2*1}=\frac{4}{2} =2 $
| 18x+-2+7x+42=-60 | | 2x-15+x-5+x=180 | | 136-8.5x=0 | | 68-8.5x=0 | | 6+7x=x+60 | | 68-8x=0 | | 0=60-64x+12x^2 | | 4(2x-2)=-(x+5) | | -6+-2x+-7=-2x+-12-1 | | 1.1b+3=-8 | | 0.2(8x+40)=1.3(x+5) | | 2x+4=-2x+8 | | 40+1.50x=2+1.50x | | 0.5=40x+30 | | 8x+28=12+-20+4x | | 4.2x-15.54=2.1 | | 7x+-28-3x=2x+-28 | | 3+6n=9 | | -10x-9=2x-16-11 | | -5k+-10=13+-1k+1 | | 5x-3(-2)=6 | | 4x-5+2=-3x-6+4x | | 4+2x^2=100 | | 6c-9=35c+12 | | -4(4-x)=4/5(x+8) | | 7y+-35+3y=10y+10 | | n−42,891=−1256 | | 5x-4+7x=3+8x-11 | | -8n+32=n-40 | | 30-5x=-50 | | 11x^2=75 | | 10+15x=150-20x |